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Abstract—A micromechanical composite model is used to study damage in a uniaxially loaded
unidirectional fiber-reinforced composite thin lamina. The matrix and fiber materials are assumed
to be elastic with the fibers aligned. An overall damage variable is introduced based on the concept
of effective stress. The local damage effects are modeled through two additional separate darmage
variables which represent matrix and fiber damage. A local-overall relation for the damage variables
is derived.

Stress and strain concentration factors are derived for the damaged composite. Damage evolution
is also considered using both local and overall analyses based on an extremum principle.

1. INTRODUCTION

Composite materials play an increasingly important role in the industry today. Of particular
importance is the problem of initiation and evolution of damage in fiber-reinforced com-
posites. The analysis of damage mechanisms in two-phase composites is a rather complex
problem that has challenged researchers during the past two decades. In particular, the
literature lacks a consistent and systematic approach to the study of damage in composite
materials.

In reviewing the available literature concerning fiber-reinforced composites, it is clear
that two different approaches are employed. In the first approach, the composite material
is treated as a transversely isotropic medium and continuum theories are used in its analysis
[see for example, Talreja (1985, 1986), Christensen (1988, 1990), Shen ez al. (1985) and
Lene (1986)). In this approach, the fiber direction is taken as the direction of anisotropy and
the classical equations of anisotropic elasticity are used throughout. The disadvantages of
this approach are that no distinction is made regarding the different phases in the analysis
of stresses and strains and no consideration is given to the local effects of deformation and
damage. Other researchers (Badaliance ef al., 1977) used fracture mechanics techniques to
analyse cracks in multilayered plates.

In the second approach, micromechanical models are used where the matrix and fibers
are treated separately in a local analysis and this, in turn, is linked with the overall composite
behavior. Different micromechanical models employ different methods of achieving the
local-overall relations. Hill (1965, 1972) employed volume averages of stress and strain
increments in the different phases and introduced certain concentration factors to relate
these volume averages of the local fields to the overall uniform increments. Dvorak and
Bahei-E!-Din (1979, 1982, 1987) and Bahei-El-Din and Dvorak (1989) used Hill’s technique
to analyse the elasto-plastic behavior of fiber-reinforced composites where they considered
elastic fibers and an elasto-plastic matrix. In their micromechanical analysis of elasto-plastic
composites, Dvorak and Bahei-El-Din (1987) identified two distinct deformation modes.
One is matrix dominated and the other is fiber dominated. The first mode is prevalent in
the case of stiff elastic fibers, while the second mode is more general where the elastic fibers
are more compliant and the mode is treated as a general case of plastic deformation of a
heterogeneous medium. Aboudi (1990) used an averaging technique in order to relate the
local stresses to the overall composite stress.

A thermomechanical constitutive theory has recently been proposed by Allen and
Harris (1987) and Allen et al. (1987) to analyse distributed damage in elastic composites.
In particular, the problem of matrix cracking has been extensively studied in the literature
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(Dvorak et al., 1985 ; Dvorak and Laws, 1987 ; Laws and Dvorak, 1987 : Allen et al., 1988 ;
Lee et al., 1989).

Continuum damage mechanics appeared for the first time in 1958 when Kachanov
(1958) introduced the concept of effective stress. Research in this area progressed rapidly
based on Kachanov's work and has now reached a stage where practical engineering
applications are possible. Lemaitre (1985, 1986), Chaboche (1988a,b) and Krajcinovic
(1983, 1984) used continuum damage mechanics to analyse different types of damage
ranging from brittle fracture to ductile failure. However, the application of continuum
damage mechanics to composite materials has been restricted to models of composites
utilizing a transversely isotropic medium (Talreja, 1985). It is clear that such an approach
is not sophisticated enough to account for local effects and no distinction is made between
matrix damage and fiber damage, or even for damage resulting from the matrix -fiber
interaction.

In this work, a micromechanical composite model is used to study damage in a
uniaxially loaded unidirectional fiber-reinforced composite thin lamina. This research con-
stitutes a first step toward development of a consistent, micromechanically based damage
theory for composite materials. A two-phase elastic composite (matrix and fibers) is con-
sidered. Local damage variables are introduced within the framework of the effective stress
concept (Kachanov, 1958). The local damage variables are then related to an overall damage
variable. Stress and strain concentration factors for the damaged material are derived in
terms of the undamaged concentration factors (Dvorak and Bahei-El-Din, 1979 ; Bahei-El-
Din and Dvorak. 1989) and the damage variables. Finally, a criterion for damage evolution
is proposed based on the works of Lemaitre (1985), Lee et al. (1985) and Kattan and
Voyiadjis (1990). The local-overall relation for damage evolution is derived based on
micromechanical considerations. An extremum principle is used to formulate the criterion
for damage evolution. The uniaxial loading problem is investigated here in order to explore
the physical interpretation of the proposed theory as far as possible. A generalization of
this theory is possible, however the tools of tensor analysis are needed and will be discussed
in a subsequent paper.

2. CHARACTERIZATION OF DAMAGE: LOCAL VS OVERALL DAMAGE

Kachanov (1958) introduced the idea of effective stress in order to characterize damage
initiation and evolution within the framework of the mechanics of continuous media. in
this approach, a damage variable is defined and used to represent degradation of the
material which reflects various types of damage at the micro-scale level like nucleation and
growth of voids, cavities, micro-cracks and other microscopic defects.

In the case of composite materials, the damage variable will also reflect the additional
types of damage that occur in these materials like fracture of fibers, debonding and delami-
nation, etc. In the following, an overall damage variable is introduced for the whole
composite system. This damage variable is found to be decomposable into two local damage
variables that are directly related to the matrix and fibers.

In this work, the discussion is limited to damage due to uniaxial tension in a uni-
directional fiber-reinforced composite thin lamina. This is done deliberately in order to
keep the mathematical formulation simple and accessible to the general reader. Analysis of
general states of damage and deformation in composite materials will require the use of
tensor analysis and will be left to a subsequent paper.

2.1. Stresses

Consider a unidirectional fiber-reinforced composite thin lamina that is subjected to a
uniaxial tensile force T along the x,-direction as shown in Fig. 1(a). Both the matrix and
fibers are assumed to be linearly elastic with the fibers being continuous, aligned and
symmetrically distributed along the x,-axis. Let d4 be the cross-sectional area of the lamina
with dAM and dA" being the cross-sectional areas of the matrix and fibers, respectively
(superscripts “M” and “F” are used throughout the manuscript to denote matrix- and
fiber-related quantities, respectively). Since the composite lamina is assumed to consist of
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Fig. 1. Damage due to uniaxial tension.

two phases only, it is clear that d4 = d4M+dA4". The overall stress increment do is clearly
T/dA and the local stress increments do™ and de* are related to the overall stress increment
do by

do = cMdo™M +cF dot, 6))

where ¢™ and ¢¥ are the matrix and fiber volume fractions (or area functions here) given
by dAM/dA4 and dAF/d A, respectively. It should be clear to the reader that c™+cF = 1. The
local transverse stress increments do', dol, do¥ and def, although nonzero, are not
considered in this work.

Using the concept of effective stress, one now considers a fictitious lamina [see Fig.
1(b)] made of the same composite material described above and subjected to the same
uniaxial tensile force 7. This lamina is assumed to undergo deformation with no damage.
In other words, it can be hypothetically obtained from the lamina in Fig. 1(a) by removing
all the damage that the lamina has experienced. Let d4 denote the cross-sectional area of
the undamaged lamina with d4™ and dAF denoting the cross-sectional areas of the un-
damaged matrix and fibers, respectively. These quantities represent net or effective areas
that include no damage. Also, let ™ and ¢ denote the volume (or area) fractions for the
undamaged matrix and fibers, respectively. The following relations should be clear :

dAM+-dA* =dd, dA<d4, dAM<d4™ and d4" <d4h

The overall effective stress increment dé is taken to be the stress in the fictitious lamina
and it is clear that dé6 = T/dA. One also considers the two local effective stress increments
dé™M and déF and as before, it can be shown that they are related to dé by

dé = ¢Fde¥ +éMdaM. ¥))

Since the two laminae are assumed to be mechanically equivalent (in terms of the uniaxial
force T that is applied to_each one), it follows directly that dé = do d4/dA4. The ratio of
the damaged area d4 —dA to the original area d4 is now used to define an overall damage
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variable ¢, in the x,~direction as follows:

dA—dA4
= e = '4
b= )
It is clear that the values of ¢, range from 0 for undamaged material to 1 for (theoretically)

complete rupture. The effective stress increment can now be written in terms of the damage
variable

46 = o )

The above expression has been used extensively in the literature (Kachanov, 1958 ; Lemaitre,
1985, 1986 ; Chaboche, 1988a, b) to model various types of phenomena like ductile failure,
brittle fracture, creep, etc.

In order to represent local damage effects in the marix and fibers, one defines two
additional (local) damage variables ¢} and ¢¥. The first one ¢! is used to model damage
in the matrix like nucleation, growth and coalescence of voids and microcracks, etc., while
the second one ¢} is used to model damage in the fiber and that due to fiber-matrix
interaction such as fiber fracture, debonding, etc. These two variables are defined as before
based on the ratios of the relevant cross-sectional areas of the matrix and fibers as follows :

_dAM—daM

=g o
dA4a¥ —dA*
o =" o)

It is clear from eqns (5) that the local damage variables satisfy the inequalities 0 < ¢} < 1
and 0 < of < 1.

One can now derive equations for the effective matrix and fiber volume fractions
&M and & in terms of ¢™ and ¢F and the damage variables ¢! and ¢F. Starting with é¥ =
dAM/dA and & = d4¥/dA along with eqns (3) and (5), one can show that

M _ M 1_, ,_}'\j

= 1 - (6a)
~F . oF l‘f_,j
o= i : R (6b)

Also, using eqn (3) along with eqns (5), one derives
¢, dA = ¢ dAM + T d4". (N

Dividing eqn (7) through by d4, one derives the relationship between the local damage
variables ¢} and ¢} and the overall damage variable ¢, as follows:

¢r = MPY + "ol (8)

The relationship between the matrix damage ratio ¢¥/¢, and the fiber damage ratio
®% /¢, is shown in Fig. 2 for different values of the matrix volume fraction ™. Tt is clear
from the figure that these ratios are always greater than or equal to one, implying that
& > ¢, and ¢} > ¢,. This remark does not contradict the fact that the matrix and fiber
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damage should be a part of the composite damage since the damage variables are defined
as ratios of areas and do not reflect the absolute amount of damage in the material.

Adding egns (6a) and (6b) and utilizing eqn (8) and the previous relation between c™
and cf, one concludes that e +¢* = 1, that is, the phase volume fractions of the damaged
material satisfy the same relation as that of the undamaged material indicating no significant
(or large) changes in the geometry of the composite system. Some authors use the
“continuity” variable ¥, defined by y, = 1—¢, (e.g. Kachanov, 1986). In this case, one
can easily show that y, satisfies a relation similar to that of eqn (8), namely, y, = My +
cFyt where y¥ = 1—¢pM and yF = 1-¢F.

Substituting eqns (4) and (6) into eqn (2) and simplifying, one obtains the following
relation for the effective local stress increments dé™ and dé* :

do = cM(1— M) ddM +cF (1~ ¢7) dé*. ®
In the derivation of eqn (9), it is assumed that ¢, # 1. Therefore, the case of complete

rupture is excluded from the discussion that follows. In view of the effective stress equation
(4), one can assume similar expressions for the effective local stresses as follows :

doM
=M __
déM = g’ (10a)
dot
~F _
dé" = gt (10b)

It is clear that eqns (10) satisfy the requirement given by eqn (9). However, the constraint
given in eqn (9) is a necessary condition to be satisfied by any alternative expression for
the effective local stresses other than eqns (10). Next, one considers the relations between
the local and overall stresses in the composite system. Following the work of Dvorak
and Bahei-El-Din (1979, 1982) and Bahei-El-Din and Dvorak (1989), one considers a
micromechanically based approach and introduces the matrix and fiber stress concentration
factors BM and BF in the undamaged lamina as given in Fig. 1(b). Therefore, one can write
the following local-overall relations for the effective stress increments :

dé™ = BM dg, (11a)
dé* = B¥ dq. (11b)

]

oW,

Fig. 2. Relationship between local damage parameters ¢/¢, and ¢5/¢, for different matrix volume
fractions.
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The stress concentration factors BM and B! can be derived from the solution of an inclusion
problem in the undamaged material. However, certain models have been proposed by
Dvorak and Bahei-El-Din (1979, 1982) in order to derive simple expressions for BM and
BY. Two of these models will be discussed at the end of Section 2.3 as they relate to the
problem at hand.

Substituting eqns (11) into eqn (2), one obtains the relation between the stress con-
centration factors and the effective volume fractions

CMBM 4 FBY =1, (12)
Substituting further for ™ and ¢" from eqns (6) into eqn (12)., one obtains:
ML —pMBM+ et (1 —YBF =1 —¢,. (13)

Assuming that stress concentration factors B™ and BT exist in the actual damaged lamina.
one can write the following local-overall relations for the corresponding stress increments:

il
o]

doM

da®

M dg, (14a)
Fde. (14b)

I
o

Substituting eqns (14) into eqn (1), one obtains the relation between the volume fractions
and the damaged stress concentration factors [see eqn (12) for comparison] ;

MBM 4 FBY = 1. (15
Finally, one substitutes eqns (11) into eqns (10) along with eqn (4). Comparing the resulting

two equations with eqns (14), one concludes that the damaged stress concentration factors
are given by

_ Al
A ‘Z)‘ ’ (16a)
— ¥
P (16b)
L=,

Therefore, once appropriate expressions are derived for the undamaged stress concentration
factors BM and BF, one can use eqns (16) to derive the corresponding expressions for the
damaged stress concentration factors BM and BF.

The relation given in eqn (16a) is now investigated in Figs 3 and 4. In Fig. 3, the
relation between the matrix damage variable ¢'' and the ratio BM/B™ is shown for different
values of the overall damage variable ¢,. It is noticed that the damaged matrix stress
concentration factor becomes larger (i.e. the ratio BM/BM grows) with the decrease in the
matrix damage variable ¢}!. This is also clear in Fig. 4. However, Fig. 4 also shows that
BM/BM increases with the increase in the overall damage variable ¢ ,. Similar remarks apply
for the fiber stress concentration ratio BY/B" of eqn (16b).

2.2. Strains

In this section, the appropriate expressions for the effective strain increments dé,. dé;
and dg, will be developed in terms of the strain increments dg,, de, and de,, and the damage
variables ¢,, ¢. and ¢ (¢, and ¢; are overall transverse damage variables along the x>~
and x,-directions, respectively). In addition, the local-overall strain equations will be
derived for both the damaged and undamaged materials.

In order to derive the required relations, the hypothesis of elastic energy equivalence
(Sidoroff, 1981) is used. In this hypothesis, it is assumed that the elastic energy for a
damaged material is equivalent in form to that of the undamaged material except that the
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Fig. 4. Effect of overall damage ¢, on the stress concentration factor for different matrix damage
parameters ¢,

stress is replaced by the effective stress in the energy formulation. Applying this to the
overall composite system considered here, this hypothesis takes the following form:

{do de, = 1 déds,, an

where deg, is the overall axial strain increment in the x,-direction and dé, is its effective
counterpart.

Substituting for d& from eqn (4) into eqn (17), one obtains the following expression
for the effective overall axial strain increment dg, :
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dé, = (1—¢,) de,. (18)
In view of the above relation, one can assume similar relations for the transverse overall
strain increments de, and de;:

dgz = (lvd)z)dgz, (193.)

dé; = (1—¢s) des, (19b)
where ¢, and ¢; are the overall transverse damage variables. The reader should note that
definitions for ¢, and ¢, similar to the definition of ¢, in eqn (3) are not possible. A more
suitable way to define these two variables is suggested in the next section.

Next, the local-overall strain relations are discussed. The matrix and fiber axial strain
increments are related to the overall axial strain increment in the fictitious undamaged state
by the following relations :

de¥ = Y dg, + CY da, + CW de,, (20a)

del = C%, dé, 4+ C, e+ CY, dés, (20b)

where CY,CY, ..., C¥,, are the appropriate matrix and fiber strain concentration factors.

Using the definitions of Poisson’s ratios v, = —dé,/dé, and V5, = —d&;/d&,, eqns (20) can
be rewritten in the simplified form:

ds¥ = cMds,, (21a)

dét = Ctdey, (21b)

where the modified strain concentration factors C}' and C?} are given by

M M _ = M __ = M
CY = Cli—vy Oy —75,C15, (22a)

Cl = CY =95, Cl,—74,CT5. (22b)

Similarly, one can write the following relations for the transverse strains:

deM = M ds,, (23a)
def = CcY ds,, (23b)
dst = ¢t dg,, (23c)
dé&f = Ct dé,, (23d)

where CY, CY, C% and C} are modified strain concentration factors having expressions
similar to those of eqns (22).

The strain concentration factors can be obtained from the solution of an appropriate
inclusion problem. However, in this work a much simpler approach is followed. This
approach is based on deriving a relation between the strain and stress concentration factors
as follows. Starting with the expression d& dé, and expanding it in terms of local axial
stresses and strains using eqn (2) and a similar equation for the effective overall axial strain,
one obtains :

dé di, = (M deM +éf deF)(eM dal +2F del). (24)
Substituting for the effective local stresses and strains from eqns (11) and (21) into eqn

(24), and simplifying the result, one obtains the following constraint equation regarding
the concentration factors for stresses and strains:
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(BMBM + &F BF)(GMCY + &F CF) = 1. (25a)

In view of the constraint relation (12), the above constraint relation can be further simplified
to:

MO+ FCY = 1. (25b)

Therefore, once the stress concentration factors BM and BF are determined, one can use
eqns (25) to derive suitable expressions for the strain concentration factors C} and CF.

In order to formulate the transformation equations for the local axial strain increments
de}' and def, one uses the hypothesis of elastic energy equivalence using local quantities.
Therefore, eqn (17) is rewritten in the form:

1doMdeM +1doF def = 1déM deM +1daF det. (26)

Substituting for d6™ and dé* from eqns (10) into eqn (26), one obtains the following
relation between the local axial strain increments and their effective counterparts:

deMde¥  doFd&

=gV T 1—¢T "

doMdeM +doF def = N

After studying eqn (27), it is noticed that it is difficult to derive explicit formulae for d&}
and déf without making an assumption. One is led directly to assume local axial strain
relations similar to the overall axial strain relation given by eqn (18). Assuming that

d&t! = (1-¢1") del, (28a)

del = (1-¢7) def, (28b)

one concludes directly that these relations satisfy eqn (27). Similar relations can be assumed

for the local-overall transverse strains as those of eqns (19) by replacing ¢, by ¢ or ¢}

and replacing ¢; by ¢} or ¢f. Substituting for d&)! and d&f from eqns (28) and for dé,

from eqn (18) into eqns (21), one obtains the following equations for the local axial strain
increments in the damaged state:

deM = CMde,, (29a)

def = CF de,, (29b)

where the strain concentration factors CY and C} are now defined in the damaged lamina
(that is, these are damaged strain concentration factors) and are given by:

- 1—¢
CY = CY - ¢¥l" (30a)
- 1—¢

Ch = cfl_¢l;. (30b)

Equations (30) can be investigated in a similar way to those of eqns (16) and some
figures can be similarly obtained. However, this is not shown here since the resulting figures
will be somewhat similar to Figs 3 and 4 and there is no need to repeat them here.

Similarly, using eqns (23) and the appropriate transformation equations for the trans-
verse strains, one obtains:

dey' = C3' de,, (31a)
de) = CM de,, (31b)
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where CY, CY, C5 and C} are related to C¥, C¥', CF and C¥ by the local damage variables.
Using generalized forms of eqns (22). one can show that:

CY=Clf [ =123 (32a)
~ 1—0o.
Ci =Ci— qs{ﬂ—, i.j=123. (32b)

Substituting eqns (16) and (30) into eqn (22) and using eqn (15), one obtains the
following constraint relation for the damaged stress and strain concentration factors:

CMCY+CFCT = 1. (33)

Equations (29) provide the required local-overall strain relations that are needed in the
next section in order to formulate the damage constitutive equations.

In general, one can show that the constraint relations for the strain concentration
factors, appearing partially in egns (20), take the following form:

MCH 4+ CE =6, i,j=1,2,3, (34a)
MCM+cFCE =6, i,j=1,2,3, (34b)

where J; is equal to 1 when i = jand 0 when i # ;.

2.3. Constitutive relations

The elastic constitutive relations are now developed in both the damaged and undam-
aged states. In addition, the local-overall constitutive relations are also discussed. In the
fictitious undamaged lamina, the overall strain increments are given by

dé
di, = —E" (35a)
_ v, dé
= - 35b
d82 E ( )
- vy dé
Sy = — ——, 35
dé, E (35¢)

where the constants E, v, and v, are the overall Young’s modulus of elasticity and overall
Poisson’s ratios, respectively. Based on eqns (35). one can write a similar set of overall
constitutive relations in the damaged lamina as follows:

[oR
)

_do 36
dsl E s ( a)
\721 dU
o _Vnde 36b
de, 7 (36b)
dey = — f?‘Ed“ (36¢)

where E, v,, and 75, are the damaged overall Young’s modulus of elasticity and Poisson’s
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ratios, respectively. It is noted that E, v,, and ¥;, are no longer constants but depend on
the damage variables. In order to demonstrate this, one substitutes for dé, and dé from
eqns (18) and (4), respectively, into eqn (35a) and compares the result with eqn (36a). It
follows that

E=E(1-¢)" (37)

Similarly, substituting for dé, and dé; from eqns (19) and for dé from eqn (4) into eqns
(35b) and (35¢), and comparing the results with eqns (36b) and (36c¢), one then obtains:

1—

For = v g (384)
1—

T3 = vay ljl. (38b)

Alternatively, solving eqns (37) and (38) for the three damage variables ¢, ¢, and ¢ 3, one

obtains:
1 = 1—\/%, (392)

vy, [E
= _—— -— 9
$2=1 iy N E’ (390)
__vu [E
¢;=1 S NE (39¢)

Equations (39b) and (39c) may be viewed as suitable definitions for the transfer damage
variables ¢, and ¢, for this problem. However, generalization of these definitions to other
states of deformation and damage is not possible. In general, a fourth-rank damage effect
tensor should be considered but this is beyond the scope of this work [for more details, see
Murakami (1988), Kattan and Voyiadjis (1990) and Voyiadjis and Kattan (1992)].

It should be mentioned that eqns (37), (38) and (39) are available in the literature
(Chow and Wang, 1987). Next, the more difficult task of developing similar relations on
the local level as well as the local-overall constitutive relations is considered.

The local elastic stress—strain relations for the fibers and matrix along the fiber direction
are given now in the fictitious undamaged configuration :

déM = EMd&}, (40a)
dé¥ = EF d&t, (40b)
where EM and EF are the constant moduli of elasticity for the matrix and fiber materials,

respectively. Substituting for dé™ and dé* from eqns (10) and for dé¥ and dé} from eqns
(28) into eqns (40), one obtains:

doM = EM deM, (41a)
do¥ = EF d¢t, (41b)

where £M and E¥ are the damaged moduli of elasticity given by :

EM = EM(1-¢19)?, (42a)
EF = EF(1—¢F)>. (42b)
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Equations (41) represent the local elastic stress—strain relations for the matrix and fibers in
the damaged state of the lamina.

Finally the local-overall relations for the moduli of elasticity are now presented.
Substituting for do™ and de¥ from eqns (41), for de} and de! from eqns (29) and for do
from eqn (36a) into eqn (1), one obtains:

E=MEMCY +FERCY. (43)

Performing similar substitutions using eqns (40), (21) and (35a) along with eqn (2), one
obtains :

E=MEMCY +¢FEFCY. (44)

Equations (43) and (44) are equivalent when one considers the transformation relations
for E, EM, EF, CY, C%, ¢ and ¢F given by eqns (37), (42), (30) and (6). Using eqns (6)
and substituting them into eqn (44), one obtains the following expression for the overall
elasticity modulus E in terms of the local parameters and the overall damage variable ¢, :

5o CHU=@MEMCY +e"(1 - ¢DEFCT
- [y T

(45)

Alternatively, substituting for E from eqn (37) into eqn (45), one obtains the following
expression for E:

E=cMEMCY (- oY) (1~ )+ cTETCT(1 =91 — 1) (46)

The above expression for £ can also be derived from eqn (43). Equations (45) and (46)
represent local-overall relations for the modulus of elasticity.

Using similar relations for the local transverse strains as those of eqns (35b), (35¢).
(36b) and (36¢), one can easily prove the following :

3 1—¢Y

M=) T o (47a)
-2

} 1—¢f

V}Z:I = Vgl 1__¢};?~ (47b)

where v}, and v§, are Poisson’s ratios for the matrix and fiber material, respectively. Similar
expressions exist for v}, and ¥5,. Similarly, one can derive relations for the local damage
variables oM, ¢, @Y, ¢F, ¢F and ¢F similar to those of eqns (39) with all overall quantities
replaced by their local counterparts. Finally, one can derive the following overall-local
relations for Poisson’s ratios by using eqns (1) and (2) and substituting the transverse
strain increments for the stress increments :

MEMCY(1- 1)+ "EFCE(—9) _ MEMCY(-4Y) | FETCE0-9Y)
- M

B (48a)
V2| v?_l V21
E_MEMCY  CFERCE
- = C"W—L + . (48b)
Va1 Va1 Vai

Equations (48) are the transverse local-overall relations for Poisson’s ratio v,, in both the
damaged and undamaged configurations. In view of the definition of the matrix Poisson’s
ratio ¥ = —d&Y'/dé}! and eqns (21a) and (23a), one can show that CY'¥3} = CY'v}i.
Similarly, one can show that C}'v}i = CYv,,. These two relations can be substituted into
eqns (48) appropriately to show that the two equations (48a) and (48b) are equivalent. It
should also be noted that similar relations can be shown to exist for Poisson’s ratio v;.
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The rest of this section is left for a brief discussion of the stress and strain concentration
factors BM, BF, CM and Ct.

In order to determine the concentration factors, one may use the Voigt model (Dvorak
and Bahei-El-Din, 1979 ; Bahei-El-Din and Dvorak, 1989). In this model, it is assumed that
the phase strain increments are equal to the overall strain increment. This assumption will
be applied here to the undamaged state, thatis d2¥ = d&t = dg,. Incorporating this assump-
tion into the presented theory by comparing with eqns (21), one directly concludes that
CM = CY = 1. Upon further using eqns (40), one has dé™ = EM d&, = EM dG/E. Com-
paring this with equation (11a), one concludes that BM = EM/E. A similar argument shows
that B = E¥/E.

The reader should be cautious, however, in using this assumption. Although the
expressions obtained for the stress and strain concentration factors are very simple, there
are certain inconsistencies that arise as a result of adopting this assumption. For example,
using a local relation for the matrix similar to that of eqn (35b), one bas de™ = (— EM/
vW)déY = (EMv,,/EvY}) dé. Comparing this with eqn (11a) and the above result for BM,
one concludes that v} = v,,. This is obviously a contradiction since the matrix and overall
Poisson’s ratios are different. This contradiction arises directly from the simple assumption
of the Voigt model. In addition, the derived expressions for the concentration factors using
this model violate the constraint equations (12) and (25b). Other more realistic models for
determining the concentration factors are available, however they are far from being simple.

The above contradiction can be corrected by employing the Vanishing Fiber Diameter
(VFD) model (Dvorak and Bahei-El-Din, 1979 ; Bahei-El-Din and Dvorak, 1989). In this
model, it is assumed that each of the cylindrical fibers has a vanishing diameter and that
the fibers occupy a finite volume fraction of the composite [in order to provide axial
constraint of the phase, Dvorak and Bahei-El-Din (1979, 1982)]. For the problem con-
sidered here, these assumptions reduce to

dé = cMdé™+cF d6F, (49a)

d, = d&M = déf, (49b)

dé, = cMdeY +cF des (49¢)
and

dg; = Mde) +cF def. (49d)

It is clear that the axial strain increment assumption (49b) conforms with that of the Voigt
model. However, a more realistic assumption is provided for the transverse strain increments
(49¢c) and (49d) which is compatible with the physics of the problem. Considering the
argument of the previous paragraph, it can be seen that the contradiction concerning
Poisson’s ratio no longer exists in the VFD model and therefore this model is appropriate
to use for this problem.

2.4. Damage evolution

There are several approaches in the literature on the topic of evolution of damage and
the proper form of the kinetic equation of the damage variable. Kachanov (1986) proposed
an evolution of damage based on a power law with two independent material constants.
However, adopting such a law here for each of the matrix and fiber materials would leave
four independent material constants to be determined. In addition, the resulting overall
kinetic equation for damage evolution cannot be solved. Therefore, a more rational
approach based on energy considerations will be adopted here.

The approach followed here will depend on the introduction of a damage strengthening
criterion in terms of a function g, and a generalized thermodynamic force that corresponds
to the damage variable ¢, (Lemaitre, 1985; Lec et al., 1985). The elastic strain energy U
in the damaged composite system is given by
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U=1Ee} = SE(1 — )¢l (50)
Therefore, the incremental strain energy dU is given by
dU = E(1—¢)%e,de, — E(1 —¢,)e1d . (5h

The generalized thermodynamic force y, associated with the overall damage variable ¢, is
thus defined by

ou

A (32)

Let g(y,.L) be the damage function (criterion) as proposed by Lee er al. (1985), where
L = L(p) is a damage strengthening parameter which is a function of the overall damage
parameter f§. For this problem, the function g takes the following form :

g=3yi—L({B) =0 (3

3
(9%}
—

In order to derive a normality rule for the evolution of damage, one first starts with the
power of dissipation IT which is given by

= *J’ld;l'“Lﬁa (54)

where a superposed dot indicates material time derivative. The problem is to extremize I1
subject to the condition g = 0. Using the theory of functions of several variables, one
introduces the Lagrange multiplier 4 and forms the function H(y,, L) such that

H=I—Jg. (55)

The problem now reduces to extremizing the function H. For this purpose, the two necessary
conditions are dH/dy, = 0 and 0H/JL = 0. Using these conditions along with eqns (54)
and (55), one obtains

: : (g
o, = —Aé}—‘ (56a)
. . dg
= - - 6
B AﬁL (56b)

Substituting for g from eqn (53) into eqn (56b), one concludes directly that 4 = f§. Sub-
stituting this into eqn (56a), along with eqn (53), one obtains:

b, = — iy (57)

In order to solve the differential equation (57), one must first find an expression for the
Lagrange multiplier A. This can be obtained by invoking the consistency condition g = 0.
Therefore, one obtains :

dg dg .
R AT S 58
3 v+ Al L=0 (58)

Substituting for dg/dy, and dg/dL from eqn (53) and for L = B 8L/6p (from the chain rule),
and solving for f§, one obtains:
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S A
p=i= dL/op’ (59)

substituting the above expression of Jinto (57), one obtains the kinetic (evolution) equation
of overall damage :

oL\ .
(5?)451 = =yt (60)

with the initial condition that ¢, = 0 when y, = 0. The solution of eqn (60) depends on the
form of the function L(f). For simplicity, one may consider a linear function in the form
L(B) = cf+d, where ¢ and d are constants. This is motivated by the hardening parameter
defined for isotropic hardening in plasticity as ,/£};&j; where é€]; is the plastic component of
the strain rate. The equivalent damage strengthening parameter can be analogously ex-
pressed as \/ﬁ_ﬁ or simply § whereby giving a linear function in 8 as discussed above.
Substituting this into eqn (60) and integrating, one obtains the following relation between

the overall damage variable ¢, and its associated generalized force y, :

3
¢1= 5. (61)

The above relation is shown in Fig. 5 where it is clear that ¢, is a monotonically increasing
function of y,.

Next, one investigates the overall strain~damage relationship. Differentiating the
expression of y, in eqn (52), one obtains:

v = Eeyfeidy —26,(1— )] (62)

Substituting the expressions of y; and y, of eqns (52) and (62), respectively, into eqn (60),
one obtains the strain—damage differential equation :

<%§)¢1 =E%(1—¢)2%,(1—¢))—e,,]. (63)

The above differential equation can be solved easily by the simple change of variables
x = &3(1 —¢,) and noting that the expression on the right-hand side is nothing but E3x2x.

3&}_ _____

)/,'/Cubic Function

#

Fig. 5. Relation between the overall damage variables ¢, and its associated generalized force y,.
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Performing the integration with the initial condition that ¢, = 0 when ¢, = 0 along with
the linear expression of L(f), one obtains:

o _E',
(=g~ 3T o

One should note that an initial condition involving an initial damage variable ¢{ could
have been used, i.e. ¢, = ¢} when ¢, = 0. The strain-damage relation of eqn (64) could
easily have been obtained by substituting the expression of y, of eqn (52) directly into egn
(61). However, it is preferable to derive it directly from the strain—damage differential
equation (63) without the use of the generalized force y,.

One can now easily incorporate local damage evolution for the composite based on
the previous discussion. One assumes that there exist two local damage strengthening
criteria gM(pY, LM) and ¢gF (3. L") having the same forms as that of eqn (53), where y}'
and y¥ are the generalized thermodynamic forces associated with ¢} and ¢}, respectively,
and L™ and L are the local counterparts of L. Linear expressions are also assumed for L™
and LF such that LM = ¢, M4 d, and LF = ¢,8" + d,, where $™ and BF are local counterparts
of fand c,, ¢,. d,, d, are constants.

Assuming matrix and fiber damage evolution laws similar to that of eqns (60) and
(61), one can write

o’ \

M b7 .

oy = 3, (65a)
a3

o= (65b)
3c,

Substituting egns (61) and (65) into eqn (8) and simplifying the result, one obtains the
local-overall relation for the generalized thermodynamic force associated with the damage
variable :

3 M My 3 i F\3
yy=¢ - (i) + P ) |- (66)
! 2

Finally, using the above equation along with the fact that y, = dg/0y, and similar
expressions for y} and y}, one obtains:

A \3 M M\3 F F\3

dg ™ [og ¢t (dg

— = | - - ey - —— . 6 7
<0}‘,> ([Cl <8,V?A> * ¢ <ay’1:>] (67)

Equation (67) is a nonlinear partial differential equation that represents the local-overall
relation for the damage strengthening criteria for the matrix, fibers and the overall composite
system.

3. CONCLUSION

A micromechanical damage analysis is proposed for a unidirectional fiber-reinforced
composite thin lamina subjected to uniaxial tension. The analysis is based on a combination
of the micromechanical composite model coupled with continuum damage mechanics. An
overall damage variable is defined for the composite system based on the concept of effective
stress. In addition, two local damage variables are introduced to account for the damage
induced in the matrix and fibers.
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New expressions are derived for the stress and strain concentration factors for the
damaged material in terms of the undamaged concentration factors and the damage vari-
ables. Finally, a criterion for damage evolution is proposed for the composite system using
an extremum principle. The theory presented here can be generalized for general states of
deformation and damage in composite materials, however, tensor analysis is needed for the
mathematical formulation. Therefore, the generalization of this theory is left to a forth-
coming paper.
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